## Supplementary Material

## Application of Exogenous Ethylene Inhibits Postharvest Peel Browning of 'Huangguan' Pear

Yurong Ma, Mengnan Yang, Jingjing Wang, Cai-Zhong Jiang\* and Qingguo Wang\*

\* Correspondence: Corresponding Author: Cai-Zhong Jiang, cjiang@ucdavis.edu; Qingguo Wang, wqgyyy@126.com

## 1 Supplementary Table

**Supplementary Table 1.** Effects of ethylene (50  $\mu$ L/L) on titratable acidity (TA), total soluble solids (TSS) and firmness of 'Huangguan' pear flesh

|                                | Storage time (d)  |                      |                       |
|--------------------------------|-------------------|----------------------|-----------------------|
|                                | 0                 | 100                  | 200                   |
| TA (%)                         |                   |                      |                       |
| control                        | $0.164 \pm 0.004$ | $0.123 \pm 0.006^a$  | $0.114 \pm 0.007^{a}$ |
| air                            |                   | $0.120 \pm 0.003^a$  | $0.112 \pm 0.003^{a}$ |
| ethylene                       |                   | $0.129 \pm 0.005^a$  | $0.122 \pm 0.007^a$   |
| TSS (%)                        |                   |                      |                       |
| control                        | $11.17\pm0.15$    | $11.73 \pm 0.33^{a}$ | $10.93 \pm 0.23^{b}$  |
| air                            |                   | $11.83 \pm 0.25^{a}$ | $11.23 \pm 0.23^{ab}$ |
| ethylene                       |                   | $12.27 \pm 0.31^{a}$ | $11.47 \pm 0.21^{a}$  |
| Firmness (kg/cm <sup>2</sup> ) |                   |                      |                       |
| control                        | $3.61 \pm 0.18$   | $3.31 \pm 0.02^{ab}$ | $3.15 \pm 0.06^{a}$   |
| air                            |                   | $3.27 \pm 0.06^{b}$  | $3.17 \pm 0.10^{a}$   |
| ethylene                       |                   | $3.43\pm0.08^a$      | $3.21 \pm 0.04^{a}$   |

Control: fruits were rapidly cooled at  $0^{\circ}$ C; air: fruits were first placed at  $20^{\circ}$ C for 8 h, then held at  $0^{\circ}$ C; ethylene: fruits were first treated with ethylene (5  $\mu$ L/L) at  $20^{\circ}$ C for 8 h, then held at  $0^{\circ}$ C. Data are expressed as mean  $\pm$  SD (n = 3). Values in a column marked by the same letter were not statistically different (p> 0.05).

To examine long-term effects of ethylene treatments on the fruit quality, the firmness, TA and TSC were measured using the pears harvested in 2013. The pears were randomly divided into 3 groups, including the control, 0 and 50  $\mu$ L/L ethylene treatment (18 fruits/replicate and 3 replicates/group. After treatment, pears were packed with foam sleeves, placed into trays wrapped with plastic film and stored at 0°C with RH 70%~80%. Samplings were taken at storage days of 0, 100 and 200.

For TA, TSS and firmness analysis, 6 fruits were randomly picked from each replicate. For TA measurement, 5 g of fruit pulp were used and extracted with distilled water (25 mL), for 30 min. Then the mixture was filtered and 10 mL of the solution was titrated with 0.01

mol/L NaOH to pH 8.2. TA was expressed as percent malic acid. Fruit juice was collected onto a digital refractometer (ATAGO PAL-1, Tokyo, Japan) for TSS measurement of Brix. Flesh firmness was measured at the equator on four side of the skin-removed fruit, using a hand-held penetrometer (Wanger Instruments, US) with 8 mm plunger diameter. Firmness was the mean value of four independent readings for each pear and expressed as kg/cm<sup>2</sup>.